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Fundamentals of the theory of the nonstationary method of determination of the thermal conductivity of 

selectively absorbing and radiating materials at high temperatures are discussed. This method is shown to 

be advantageous over the stationary procedure of solution of inverse and direct problems of radiative- 

conductive energy transfer. 

Many original methods have been developed for solution of direct problems of nonstationary radiative- 

conductive energy transfer (RCET) [1 ]. The required temperature dependences of the optical properties of a 

partially transparent material (PTM) and its bounding surfaces in the spectral region important for thermal 

radiation transfer as well as of its thermophysical properties (heat capacity, density, and thermal conductivity) 

have been measured in separate experiments. Perfect, in theoretical and technical aspects, methods exist for 

determination of PTM optical properties, heat capacity, and density which provide a good fit of these quantities as 

judged from measurement results [2 ]. For determination of PTM thermal conductivities two methods of stationary 

[2, 3 ] and one method of quasistationary [4] RCET regimes are developed. But the data on PTM thermal 

conductivity obtained by these methods show substantial disagreement, e .g. ,a  maximum deviation of the thermal 

conductivity data for quartz glass in [2, 4 ] and [3, 5 ] that attains 19 % at 1137 K. This necessitates the development 

of new methods of solution of inverse RCET problems for various boundary conditions. 

The present  work provides the results of numerical studies of the nonlinear inverse problem of 
nonstat ionary RCET using an experiment scheme and boundary conditions differing from those in [4]. 

Consideration is given to the inverse problem of nonstationary RCET with linear (or close to linear) time variation 
of the temperature at one nontransparent boundary of a flat sample and with adiabatic conditions simultaneously 

maintained at the other nontransparent  boundary [6]. The obtained solution to the inverse problem of 

nonstationary RCET under monotonic heating conditions represents an extension of the quasistationary inverse 

problem of nonstationary RCET whose solution is given in [6 ]. The statement of the problem under discussion is 

aimed at elimination of some drawbacks that are typical of the models of 2 measurement under stationary conditions 

[2, 3 ] and in symmetric heating in a quasistationary RCET regime [t ] and that emerge in studies of PTM melts. 

For the PTM melts the method in [3 ] is inapplicable because it is difficult to maintain a melt in the form of a plane 

layer with two partially transparent boundaries. In addition, stationary methods [2, 3 ] favor prolonged residence 

of a melt sample in a high-temperature zone, thus causing instability of their optical properties [7 ] (diffusion of 

the heater material to the boundary surfaces of a solid sample [2 ], a change in the degree of oxidation of metals- 

dyes with a transient valence, and, as a consequence of these two instabilities, instability of the absorption 

coefficient of a melt [7 ], crystallization, and so on.) Finally, in the quasistationary method in [4 ] the error of 

measurement of the absolute temperature inside a PTM is indeterminate in its value and sign. Notice that 
determination of the error of temperature measurement inside a PTM layer is an independent complicated RCET 

problem whose general rigorous solution has not been obtained yet because it necessitates solving two- and three- 
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Fig. 1. Schematic of the method of thermal conductivity measurement of 
partially transparent materials under monotonic heating conditions (melt). 

dimensional direct problems of nonstationary RCET. The available solutions of this problem are obtained by 

approximate methods for the special case of a "cold" layer of a scattering PTM [8 ]. 

The suggested scheme of measuring ~ under monotonic heating conditions (Fig. 1) eliminates the indicated 

error of temperature measurement inside a TPM by the known nonstationary method [4 ] owing to the possibility 

[6 ] of temperature measurements at nontransparent layer boundaries (instead of on a sample) which are sufficient 

for complete solution of the inverse problem of nonstationary RCET. In addition, the reasons for instability of 

optical properties in the case of stationary methods are eliminated owing to a decrease in the time for obtaining 

experimental data, minimization of the time of interaction between the boundaries and the sample, and provision 
of technical conditions for investigation of PTM melts. 

By analogy with nontransparent materials the main heating-cooling conditions in a quasistationary RCET 
regime are the following conditions at both boundaries of the plane layer of the sample: 

d - ~  /dT = const 

and of the total temperature drop over the layer: 

d (AT) /& = const. (2) 

Since in wide-range temperature measurements in a quasistationary regime at a cold boundary of the 

sample condition (1) is disturbed and, as a consequence, condition (2) is disturbed too, this regime needs a more 

adequate description that could take into account the temperature dependence of thermophysical properties of the 
sample by analogy with nontransparent materials [9 ]. 

Fulfillment of regular conditions of the second-kind (1) and (2) in a plane PTM layer, with the temperature 

of its nontransparent boundaries being a linear function of time, is theoretically based within the framework of the 

linearized problem [41. 

In [6 ] it was established experimentally that for the conditions considered the stage of the regular regime 

of RCET of the second-kind is attained rather quickly and conditions (1) and (2) are fulfilled with an error of no 

more than 3 ~  in the rather wide temperature range from 900 to 1600 K. In the present work, with reference to 

this experimental justification of the onset of the regular RCET regime of the second-kind we consider the influence 

of different heating parameters of the sample (heating rate, temperature distribution, and sample thickness) on the 

accuracy of solution of the inverse problem of nonstationary RCET, which is important for a thermophysical 

experiment. 
We consider (Fig. 1) plane layer 1 of a nonscattering selectively absorbing PTM with thickness 2H whose 

boundaries are metallic foils 5, 6 with optically smooth surfaces in direct contact with the layer. Heater 2 is placed 

at the boundary x = -/4 and emits a heat flux along the positive direction of the x axis. The temperature of this 

boundary changes monotonically with some rate b(-H, T) = dT/d~ I x=-H that deviates whithin 1 -2~  from a constant 
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value. Adiabatic conditions at the boundary x = H are ensured by maintaining a temperature difference close to 

zero between it and adiabatic envelope 3 with the aid of adiabatic heater 4 emitting a heat flux directed oppositely 

to the x axis. The coordinates originate from the center of the layer. We measured the temperatures of both 

nontransparent boundaries of the PTM layer, viz., T1 (O = T( -H ,  T) and T2(r) -- T(H, T), and, consequently, the 
heating rate b(x, ~) as a function of time. 

Heat transfer in the layer was determined from the energy equation 

0x -g-ix + E (x, r) = cp (7") p ( r )  ~-~ 

together with the boundary conditions 

T ( - H ,  ~ ) =  T 1 (~);  

(3) 

(4) 

AT (~') = T 2 (x:) - T 1 (~:) ; (5) 

OT (x) i = 0.  (6) 
Ox [ x=H 

A detailed expression for the vector of radiation flux in the layer determined from the general formula 

E (x ,  r) = ~ f [J+v (x ,  t x , ~) - .I~ (x ,  IX, ~) ]IXdixdv, (7) 
v=0 /x=0 

was obtained from formal solutions of the radiation transfer equations 

d7 +(-) 2 l}, (8) 
(+-)ix ex - (u  Ix)(+-) nv Sv,  t r  

which are solved together with the boundary conditions 

2 (9) 
d :  ( - )  ((-7/-) H ,  "t') = el(2) n v dv, v [Tl(2) ] (+-) Rl(25 d~ -(+) ((~5 H ,  "r). 

In order to describe a monotonic regime in the plane PTM layer, we expand the temperature dependences 

of the thermophysical properties of the layer into a Taylor series within the limits of the temperature drop over the 

thickness in the vicinity of the base point x = -H: 

m i~,O (9) i x = i  1 + ~ [ T ( x ) -  T 1]n/n! ( i = ~ ,  cp, p . . . .  ) .  
rt=l 

Formula (10) is used in (3) with an account for the expansion terms of the necessary order of smallness. 

In order to make the solution of (3) less cumbersome, we consider the temperature dependence of the 

thermophysical properties with an account for the expansion terms in (10) up to the second order of smallness: 

i x = i 1 [1 + a i ( T  x -  T1)], (11) 

1 
( di I is the relative temperature coefficient of the thermophysical properties at the point x = -H. In where ai = ~ ~-~) 

1 

the range of moderate and high temperatures, excluding the phase transition regions, the following conditions are 
valid: 
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b ( x ,  v) = b ( - H ,  r) + ~ b ( i - 1 ) ( - H ,  v) O i-1 ( x ) / ( i -  1 ) ! ,  
i 

la/I ~ 3.10 -3 K -1 ' 

that enable us to determine the convergence conditions for (10) in measurements of the thermophysical properties 

at I T x -  T1 I <- 10-50 K : 

[a i IT(x)  - T1] I _< 0.15. (12) 

Having transformed Eq. (3), we replace the heating rate OT(x)/Oz = b(x, r) in the r ight-hand side by the 

expansion of this quantity into a Taylor series in the vicinity of the point x = -H:  

(13) 

where 

0(x) = 0 ( x ,  r) = T ( x ) -  T ( - H ) ,  

Then Eq. (3) passes from a partial to an ordinary differential equation 

d x  -d~ + E (x ,  T) = 

= -  cp (T) p (T) b 1 1 + -~l " " " 

Integration of (14) from H to x with use of (6) and subsequent integration of the result from H to x with 

an account for (4) yields 

where 

0 (x) = Cp ( r ) p  (T)  b 1 (3/-/2 + 2 H x  - x2)/2)t  (T)  - 

H 0i_1 - [ c p ( T ) p ( T ) / 2 ( T ) l  ~, b~-l) / ( i  - 1)!  f ( ~ ) K ( x ,  ~)d~ + 
i - H  

2~ 2 
+--A-- E f nv( 

i (v) 

H i-i 0i-1 f { G ( - H ,  ~)Jv,~ ( - H )  ( ~ ) / ( i -  1 ) ! - -  
- H  

- G v (X,  ~) ]~i,;1) ( _  H)  [/9 i -1  (~) -- 0 i - 1  ( X ) ] / ( i  - -  1) !} d~ - 

-- A v (x) ar~i~ 1) ( -  H)  0 i-1 ( x ) / ( i  - 1) ! + [A~ ( -  H) - A v (H) ] Jv,v (-- H)  + 

+ [F1 ,v (x) - F 1,v ( - / 4 )  l Jv,v ( -  H) + [F2, v (x) - F2, v ( -  H) ] Yv,v (H))  dr,  (15) 

1 
G (x ,  ~) = f 

t,=O 
( exp ( -  rv Ix - ~1) + (Rl,v exp [ -  ~ (2H + x + ~)]  + 

+ R2, ~ exp [ -  7~, (2H - x - ~e) ] + Rl,v R2,v {exp [ -  y~ (4H + x - ~) ] + 

+ exp ~ -  r .  (4H - x + 8 )1} ) /~  -1 ) ~ d ~  ; 
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1 
Fl,v (x) = f 

0 
(1 - R 1,v){exp [-- Yv (H + x) ] + 

+ R2, v exp [ -  Yv (3H - x) ]} Iz2flv 1 k71 d,u ; 

1 

Fz,~ (x) = f 
0 

(1 - R 2 , v )  {exp [ -  Y~ ( H  - -  x) + 

+ R1, v exp [ -  7v (3H + x)]}/~2fl~ -z kv -1 dkt ; 

H 
Av (x ) = f 6v (x , ~)d~; 

-H  

{ - H - ~ ;  - H < ~ < x ,  
K (x ,  $) = (x > 0);  

x - H ;  x < - ~ < H ,  

{ - H - ~ ;  - H < ~ < x ,  
K ( x ,  ~) = (x < 0).  

x - H ;  x < ~ < H ,  

We solve expression (15) by the method of quadrature formulas when it is approximated by a system of 

nx - 1 nonlinear algebraic equations (nx is the order of a quadrature along the coordinate containing the unknown 

nx, ;t, Ti (i = 2, ..., nx). For complete determination of the problem we supplement (15) with condition (5). The 

nonlinear nx-th-order system obtained is solved by the Newton iterative method [10]. The method suggested is 

time-saving due to uncoupling of the frequency and coordinate variables in the Planck function, the differences of 

which in (15) are expanded into a Taylor series in the vicinity of the coordinate x -- -H.  Use of this transformation 

in (15) makes it possible, with all the functions of frequency and angle being predetermined, to operate only with 

the functions of the coordinate in the Newton iterative process. 

Optimization of numerical implementation of the suggested method for solving integral equation (15), 

associated with replacement of the integrals over the wavelength, angle, and coordinate by the corresponding 

quadratures, was fulfilled using composite quadratures with increase in the number of nodes in the zones where 

d]v,v/dv, R~) ,  G(x, ~) changed abruptly. In addition, at Rl,v -- R2,v we used the symmetry property of the kernel 
of the equation G(x, ~) = G(-x, -~), thus reducing the amount of calculations by almost a half. 

The angular dependence of the reflectivity of the metallic boundaries of the layer was determined by 

Fresnel formulas [11 ]. The optical constants were determined by the Kramers-Kronig dispersion method modified 

by Miloslavskii [12 ] to determine the phase-angle corrections for the case of a restricted spectrum of the normal 

reflectivity. In order to avoid the procedure of matching the data on the normal reflectivity and the optical constants 

at the same wavelength, we used the self-consistent method developed at the Institute of High Temperatures of the 

Russian Academy of Sciences [5 ]. 

The heat capacity of the glasses was determined theoretically [13] and experimentally [14 ]. 

The spectral temperature functions of the optical properties of the glasses, melts, and platinum boundaries 

were taken from [15-18 ]. Data on the temperature-time dependence of the sample boundaries were measured on 

an experimental setup having two measurement units. In the first unit, adiabatic conditions were maintained on a 

bipartite solid sample with symmetric heating of the boundaries when a platinum sheet was placed between samples 

of equal thickness. In the second unit (Fig. 1), adiabatic conditions were ensured by maintaining a zero temperature 

difference between the cold boundary of liquid sample 1 and adiabatic envelope 3 with the aid of adiabatic heater 
4. Linear heating of the hot boundary of the sample was carried out with the aid of an RTM-3M temperature 
regulator having a modernized control cicrcuit at a rate of 0.05 to 0.3 K/sec. The temperature drop over the sample 

was measured by PR 10/0 thermocouples with a 0.1-mm diameter of the thermoelectrodes. Adiabatic conditions at 
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Fig. 2. Relative error in determination of the true thermal conductivity (%) 

as a function of the relative error in determination of the total flux (%) 

released at the hot boundary of a plane layer for different thicknesses (dashed 

lines, stationary conditions; solid lines, monotonic heating): 1) 20; 2) 10; 3) 

4 ram. 

the cold boundary of the sample and minimization of lateral heat transfer between the sample and the furnace 

background were achieved with the aid of VRT-3-type temperature regulators. Preliminarily, the signal of the 

temperature difference between the cold sample boundary and the adiabatic envelope, produced by a differential 

probe, was amplified by an F-118 nanovoltmeter. Readings of the temperature probes were recorded by two F-30- 

type multimeters every 60 sec from F-599-type digital chronometer readings. 
Equation (15) was solved for KI quartz glass in the range 700-1570 K using a program written in 

FORTRAN-4 for an SM-4 computer (with the number of nodes being 19 for the coordinate, 9 for the angle, and 

17 for the frequency, the computation took 40 rain). A comparison of the result of solution of Eq. (15) with the 

results of other solutions of the nonlinear inverse RCET problem [1 ] has shown the sufficient reliability of the 

program and the effectiveness of the method suggested for solution of Eq. (15). A criterion of convergence of the 

iterative process and thermal conductivity determination is the equality of calculated and experimental heating rates 

of the hot sample boundary with simultaneous fulfillment for the following conditions: 

jlq)- j(J-i) I I b~) - b?-i) 
20 ) < 10 -5 and b~ ) < 10 -5 . 

The total systematic error for the confidence coefficient 0.95 was evaluated as the maximum permissible 

one: 

A;t = 1.1 X/ZMr2f + ZM2(AT) + A,;t2(bl) + A;t2(H) + 2A;t2(Rh) + AJ.2(k) + A22(CpP) + A22(n) �9 

Here A~re f = (O]t/OT)ATref, where ATre f is the total error of determination of the reference temperature (Tre f = T 2 

+ 0.SAT). This inverse RECT problem on evaluation of the systematic error in thermal conductivity determination 

was solved for the two types of glass samples investigated (TF-5 and KI). The data for KI glass are given in Table 

1. 
Figure 2 shows the relative error of solution of the inverse RCET problem of ,~tr/)ltr determination as a 

function of the relative error of determination of the heat flux released by a plane layer under a stationary regime 

of measurement AQs/Qs (dashed lines) [7 ] and one considered monotonic AQm/Qm (solid lines). Solutions were 
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TABLE 1. Estimation of the Systematic Error of Parameters in Thermal Conductivity Determination for a KI Glass 
Sample with Platinum Boundaries from Solution of the Inverse RCET Problem Using the Data of Measurements under 
Monotonic Heating Conditions for H = 0.002 m 

Parameter 

k 

n 

Rh 
AT 

H 

bi 

coo 

Tref 

Parameter 

error, % 

12.0 

1.5 

3.0 

3.0 

0.01 

0.45 

0.5 

0.35 

XA2i 

773 

-0.01 

-0.08 

0.1 

3.1 

0.02 

0.65 

-0.68 

0.45 

3.570 

A~ i, %, at temperature T1, K 

973 

-0.03 

-0.12 

0.28 

3.3 

0.04 

1.04 

-1.05 

0.61 

4.503 

1273 

-0.09 

-0.20 

0.42 

3.54 

0.05 

1.53 

-1.6 

0.74 

4.872 

TABLE 2. Results of the Solution of the Direct Nonstationary RCET Problem for a KI Glass Sample for T1 = 1273 K, 
cp = 1242.4 J / (kg .K) ,p  2204.06 k g / m  3, 2= 2.406 W/(m-K) 

Samplethickness 2H, mm Heating ra tefor the  h o t b o u n d a r y x = - H  

20 0.1361 ~ 

4 1.917 

carried out at 1273 K for KI glass with platinum boundaries. It is seen (Fig. 2) that the error increases sharply 

with increase in sample thickness. As regards the accuracy of solution of the inverse RCET problem, the method 

suggested is advantageous over the well-known stationary method [7 ] as judged from a comparison of the true 

errors in determination of Qs and Qm = cppblH: the error of Qs is no less than 2%, the error of Qm is no more 

than 0.8 %. Table 2 lists results of heating rate determination from solution of the direct RCET problem for a plane 

layer of KI glass of different thicknesses with platinum boundaries. At the given values of T 1 and H the temperature 

difference over the layer was AT = 14.33 K, which made it possible to neglect the temperature dependence of n, 

k, .~, cpp. As is seen, with a fivefold increase in thickness the heating rate increases by a factor of 14, with all other 
parameters being the same. 

Analysis of the influence of the error in determination of the optical properties of the heater, the cooler, 

and the experimental parameters of the heat transfer system (AT, T1, bl) on the accuracy of solution of the direct 

RCET problem for KI glass has shown that Qs determined in a stationary regime depends on the error of 

determination of the temperature T1 of the hot boundary and its emissivity while the heating rate in a monotonic 

regime depends only on T1 and its dependence on the error of determination of the hot boundary emissivity is half 

as strong. Thus we may conclude that in terms of accuracy the method of monotonic heating with adiabatic 

conditions maintained at the cold boundary [6 ], suggested for PTM thermal conductivity determination, is on a 

par with the stationary method. 

N O T A T I O N  

c, true heat capcity; p, density; 2, thermal conductivity of the partially transparent material; ~, time; T, 

temperature; J ~ ( - ) ( x ,  ~u), forward (backward) intensity; x, coordinate of the point, x = x ' H  ( x ' E  [-1, 1 ]);/z -- I cos 

~'l ; ~, angle reckoned from the positive axis x; H, half-thickness of the layer; Jr, v, intensity of the equilibrium 

radiation in vacuum; n, k, refractive index and absorption coefficient of the partially transparent material; e, 

emissivity of the layer boundaries; R, reflectivity of the layer boundaries; 7 = k/l~; fl = 1 - R1R  2 exp (-47//); O(x) 

1214 



= T ( x )  - T1 .  Subscripts: 1 (2), hot (cold) boundary; v, spectral dependence; p, isobaric process; h, hemisphere; s, 
stationary regime; m, monotonic heating. 
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